一篇文章让你成为prompt专家
用户在使用大模型产品的过程中,需要通过输入精准的prompt,来得到自己想要的答案。那么,在使用大模型的时候,我们要怎么写prompt,才可以更高效地获得想要的答案?这篇文章里,作者便做了梳理和总结,或许会对想了解大模型的同学有所启发。 前言 一直有在持续研究大语言模型,给身边的朋友推荐了很多国内外的GPT产品,大多数朋友体验完的感受就是“AI也就这样吧~”,这可能也是Chat GPT在今年第二、三季度的日活开始下滑的原因之一。 目前的市面上大部分的大模型训练数据量级少则都在百亿级别,多则在万亿级别,GPT的回答质量高低一方面取决于模型本身的数据和对自然语言的理解,另一方面取决于我们输入的提示内容(prompt)是否足够精准和具体。 在今年五月份的一篇文章也有提到过如何使用GPT类产品,那么今天就从更专业的角度,再给大家详细科普一下究竟如何写prompt,可以更高效得到你想要的答案? 一、基础概念 在开始写 prompt之前,我们先了解关于prompt的这些基本概念: 1. Prompt定义 Prompt(提示)是一段文字、一句话或一个问题,它被用来引导人工智能模型生成文本或执行特定的任务。它是用户与模型之间进行交互的起点,用于明确用户的需求和意图。 2. prompt作用 Prompt的主要作用是引导模型进行文本生成或其他自然语言处理任务。 模型会根据提示理解用户的要求,并生成相应的文本作为响应。 3. 示例 一个常见的示例是,如果你想要让模型翻译一段文字成另一种语言,你可以使用以下提示:“请将下面的英文文本翻译成法语。”在这个提示中,明确了任务(翻译)和要翻译的语言(英文到法语)。 4. 任务导向 Prompt可以是任务导向的,它明确要求模型执行特定的任务,如翻译、回答问题、生成文章等。任务导向的提示通常包含清晰的指令。 5. 开放性提示 除了任务导向的提示,还可以使用开放性提示,让模型自由生成文本,例如:“请写一篇关于夏季的文章。”这种提示不会明确规定具体的任务,模型需要自行决定生成什么内容。 6. 上下文(背景) 在多轮对话或复杂任务中,提示可以包含上下文信息,以确保模型理解问题的背景和条件。上下文可以帮助模型更好地生成相关的响应。 二、不同类型prompt示例 1. 任务导向型 生成一首诗歌,主题是秋天。翻译以下西班牙文句子成英文:“El sol brilla en el cielo.”回答问题:“谁是莎士比亚?”创建一则新闻标题,涵盖太空探索的最新进展。 2. 开放型 请写一封感谢信,内容自由。描述一个你最喜欢的旅行目的地。编写一篇文章,讨论气候变化对环境的影响。请写一个故事,以“一只迷路的小狗”为主题。 3. 上下文 在以下对话中,作为第三轮的回应,继续对话:对话前两轮:用户:明天天气怎么样?模型:明天预计会有阵雨,最高温度25°C。用户:那我应该穿什么?你是一名餐厅服务员,一位客人对你的建议提出了投诉,请回应。 4. 提示设计 对比下面两个提示,哪一个更适合获取模型的长篇文章回应?提示1:请写一篇关于太阳系的文章。提示2:请用详细的文字描述太阳系中每个行星的特点和轨道。...