文章主题:AI, UI/前端, 多模态交互, 用户情绪设计

666AI工具大全,助力做AI时代先行者!

1718407415854.jpg自2022年下半年开始,席卷而来的AIGC对设计工作者带来不小的冲击,设计本是一个“GC”生产内容的岗位,AI生产内容有什么不同?1718407416159.jpg如何理解一波浪潮的发生逻辑及影响,如何用好AI工具帮助我们生产内容,是群核设计团队的新课题。目前有了一定的成果和观点,今天跟大家一起分享与交流。本文将从宏观角度来聊聊这一轮AI对设计行业到底有什么影响,对我们有什么启发?1718407416297.jpg

了解今年狂飙的AI

现如今AI火热体现在3个方面:生成式AI到了技术发展从开始走向期望的膨胀期,现象级产品已经出现;在产业结构中,AI智能应用近乎爆发的状态;生成式AI的可控性突破也是爆火的重要原因之一。

1、技术发展趋势的预测

(Gartner每年都会盘点新技术处在哪个阶段,分起步、期望膨胀、破灭、发展几个阶段,以此帮助判断科技产业未来走势)去年9月份,「Gartner」就预测生成式AI已经进入期望膨胀高位,到2023年8月「Gartner」刚发布人工智能技术成熟度曲线,生成式AI从技术萌芽期到技术膨胀期的顶峰,跟过去一段时间AI在学术、产业、资本领域的爆火完全呼应。1718407416390.jpg同时,Gartner预计AIGC未来5年会是预期破灭的时段,这是任何一项新技术成熟发展的必经之路,也可以理解是AI技术融入现实的开始。

2、 从产业的结构看,这一轮爆发的机会在智能应用

硬件、云平台(模型层)、智能应用、应用分发构成了AI整个产业链条,站在产业格局的角度看,算力很重要、硬件却并非关键。这轮变革最大的机会在应用层面,所以大量涌现出智能应用,比如ChatGPT、Midjourney;以及各行各业基于大模型对AI能力接入,提升自己产品力或服务能力。1718407416476.jpg

3、生成式AI在可控性层面的突破

生成式AI并不是刚出现,这一轮爆火,除了训练参数的质变,还有一个原因是是“可控度”,即在多个应用领域局部、初步思维上可控,AI可以从随机到可控的生成,才有了更多可用的场景,也是这一轮技术变革关键原因。1718407416552.jpg从GPT-3.5到GPT-4,生成式AI的逻辑推理能力显著提高。拥有强大的分析能力(如从文章中提取数据,总结趋势),控制能力(如将人类语言转化成复杂系统控制指令)和初步的逻辑推理能力(如解答简单的数学、逻辑题)。可生成的文本内容也扩展到数据、表格、代码、指令序列、工作流或工具链等结构化文本。这直接引发一大批以Copilot为特征的新工具爆发。内容创建工具是生成式AI落地最直接也最快捷的场景。随着生成式AI可控性的提升,内容创建任务会从文本、图片创建,过渡到视频、3D、动画等,让设计从业者有了更多“创作团队”。市场的期望膨胀、面向用户的智能应用爆发、内容生成可控性的提升,在产业变革的漩涡中,以内容生产谋生的设计师,我们需要了解AIGC到底对设计行业产生了什么影响,到底替代到什么程度了,设计师该如何应对?下面重点聊下这几个话题。AI对设计行业产生什么影响影响体现在3个方面:设计门槛降低了,中低端设计需求将会变少;设计岗位有了更多的“武器”来提效或提升质量;新的交互形态对传统的图形界面工作者有一定的冲击。

1、设计门槛降低,设计工具平民化

设计越来越平民化,对设计要求不高的个人、团队、组织将可以靠自己“完成设计”,拿到产物,某种程度上讲,这部分中低端设计需求工作变少了。1718407416742.jpg

2、“全面”替代设计岗还是增强设计岗?

自人工智能出现以来,替代的声音一直是热度话题,技术的变革都有两面性,对于AIGC发展,到底是替代还是增强设计?

结论1:职业的替代还有一些距离

1718407416834.jpg

🚀观察揭示,AI的影响力虽广,但职场现实却存在微妙差异。对外界而言,它仿佛点亮了许多职业领域的‘灯塔’,如🎨 UI设计与💻前端开发,常被误解为不再需要人类亲力亲为。然而,深入行业内部,从业者们的声音往往更为务实。他们深知,AI并非取代,而是与之并存,共同推动技术进步与创新。👩‍💻工程师们正适应新角色,拥抱变革,以专业技能与人情味,打造未来工作的新格局。SEO优化提示:#AI职场 #技术革新 #人性化交互

1718407416907.jpg实际在真实的商业生产环节中,职业完全替代还不够明显,但岗位工作的渗透是在进行的,以UI和创意来举例:比如设计师可以通过Stable Diffusion、Midjourney来生成配图、图标、以及方案的初步原型,然后再进行精细化设计。

结论2:岗位增强可部分实现

1718407416974.jpg下图是设计团队的典型场景,我们用AI结合各设计环节进行试验,初步得出一些典型场景中的应用及可应用的程度,后续我们将以案例形式分享主要环节的应用成果,暂不赘述。1718407417071.jpg对内容生产的设计师来说,AIGC产品可以作为一种创作工具来丰富设计手段,加速设计 OR 提升设计质量,以Midjourney生成素材为例:1718407417141.jpg相比C4D做一个素材,可以大大提升出图效率,这种与AI协作的形态,市面上也是最多的,本质是增强设计师产出的效率。

3、新的交互形态对“传统用户界面”从业者的冲击

界面交互的需求繁荣得益于图形交互的兴起和市场的发展,从CLI(命令行)→GUI(图形交互)→LUI(自然语言交互),对设计服务的要求自然不同1718407417214.jpgCLI时代,不需要画图的交互,特定人群用特定命令与电脑进行交互;GUI时代,图形的准确性、吸引力能直接影响业务效果(流量、转化、收入等),尤其是消费类产品;LUI时代

🌟随着技术的进步和用户需求的演变,我们正经历一场从传统图形向多元化交互模式的转变。🎨尽管曾经的视觉冲击力可能不再那么重要,但未来的设计挑战将聚焦于如何巧妙地融合多种感官体验,如多模态交互(触觉、听觉与视觉交织),以及深入理解并引导用户情绪。🔍这些新的交互方式不仅要求设计师打破常规,还要具备敏锐的情感洞察力,以创造出更人性化和沉浸式的用户体验。💻让我们期待在不断迭代的创新中,为用户提供更多超越视觉的惊喜吧!🌟

现在生成式AI产品,文生文、文生图,多见的交互形态就是一个输入框、一个语音输入按钮,即一个入口可完成“几乎所有的任务”。1718407417282.jpg原本完成这些任务需要UI、前端大量的页面、弹窗等交互流转,现在直接绕过了这些复杂的界面环节,如果语音能直接作为直接输入的方式,连“输入框”都不需要了,用户自然对话就可以完成任务,对“界面交互”从业者来说总需求量就变少了。可能有人会问:各公司都在开发和迭代AI工具,市场需求不是增多了吗?这里以SaaS公司为例:短期内,各个软件开发公司都是以SaaS上生长AI功能为主,本质还是加功能的逻辑,AI只是一个没有颠覆和替代原产品形态的附加功能,或者是Copilot。长期看,除了SaaS+AI,AI改变行业的可能性,大概率未来大量在AI上生长SaaS,那将更大程度上冲击着从业者的原有工作范式,图形界面工作者可能会需要转型为AI交互、AI多模态交互定义者(可能),总体需求可能变少更有甚者认为,某些SaaS业务在人工智能时代“Software as a Service”中的“Software”不一定存在,Service的提供形态将会多样化或“弱界面化”,这样对应原工作形态的从业者,将会带来不小的冲击。

现在的AI,擅长哪些地方

真正在实践使用AI工具的过程中可以发现,目前的AI强大但不完美,准确的说现在的AI产品在很多场景都会出问题或者说“不如人”,但我们需要用它“超出人”擅长领域,也需要知道和规避它的短板。设计师主要打交道的信息载体为图形和文本,下面主要对图形类、文本类做分析和应用探索。

1、图形设计:创意插画、图片类

越具象越复杂,效果越好:图形生成类的AI目前有明星产品Midjourney、Stable diffusion、Dall E等,基于大模型通过文生图、图生图的方式,得到结果。在生成的图片时,越具象AI表现越好,因为具象可以通过很多关键特征去描述它,越抽象越难描述。不考虑思考过程时间消耗,将人工手绘和AI绘制对比,AI可能无法稳定的绘制靠左的相机图形,但可以很快、较稳定的绘制右边的相机,而人去绘制右边相机可能需要至少一天时间,还不一定有AI效果好。所以现在市面上用AI做设计都是比较复杂的图形,比如人物角色、动物、3D物件等引申话题:从降低设计门槛,替代部分设计工作来讲,前些年模板式设计也很火,从出图的角度考虑,生成式AI与模板式设计,哪个好,选哪个?如果不画图就快速的产出,模板式设计与生成式AI出图是摆在面前的两种选择,模板式设计不算AI,可以当做“智能产出”,到底哪个好,核心差异在哪?仅讨论目前的产品,模板式设计是非专业设计师的生产工具,生成式AI工具是专业设计师的“外挂”武器。模板式设计虽然在类型上、自由度上容易局限,但上手难度低,可以直接拿到产物全部,不需要再次的图片拼接与再处理,对于非专业人士还是非常友好的,因此模板式设计在AI冲击下,仍有市场。对于专业类设计师,尤其是对产出要求比较高的场景,模板式设计可用之处较少,反而生成式设计能帮助设计师在灵感和方案可能性的探索上,提供一个“外挂”,如Stable diffusion、Midjourney。

2、文本类

文本类生成式AI比较成熟的,如ChatGPT、讯飞星火,以及各大语言模型衍生出一系列文本对话式的AI产品、插件。以ChatGPT为例,擅长对客观、强规律性的内容回答,并具备举一反三的能力,如推理类、总结类、常识类、翻译类等问题。结合设计场景,利用大语言模型分析、推理、总结能力,可以辅助设计完成内容总结、报告内容提炼、知识解读、内容续写、创意发散与脑暴等场景。除此之外,市面上不少基于大语言模型,结合原本的产品能力,让产品更智能的智能应用:如视频解析文本+大语言模型,典型产品有飞书妙记、通义听悟,可以进一步提炼视频中的内容,在会议记录提取、可用性测试问题还原提取上非常实用;如PDF解析能力+大语言模型,可以让PDF具备可检索、可提炼的,对于设计师来讲可以利用此能力来分析行业报告、日常的设计调研工作更轻松,典型产品:ChatPDF;如思维导图、文本撰写产品+大语言模型,可以帮助设计在梳理思维导图时辅助脑暴创意、制定有条理的内容,典型产品:Boardmix、Notion AI等。

3、界面设计

界面设计中的AI主要有几种:

界面生成

AI Copilot

局部AI小功能,如填充文本、图片,生成设计系统等

这里主要聊下界面生成

🌟改写版🌟在众多服务领域中,某些选项的独特挑战和局限性显而易见。比如,尽管初期可能吸引眼球,但后期的用户体验优化(UX)和全面覆盖范围往往成为决定成功与否的关键因素。相较于它们,这两个方面似乎略逊一筹,需要更深入的关注与改进。

市面上有UIzard、Galileo、即时设计、Figma等界面设计工具增加了AI生成界面能力。目前看到的案例能尝试生成一些高度通用的页面,如Onboarding page和Delivery app。不考虑“只是体验下这个功能而已的情况”,目前界面类的产品难以融入到设计流程里,主要原因是生成结果不稳定。生成的飞机稿对于设计来说增益还不显著,真正扎根业务的界面设计师缺的也不是飞机稿、过程稿。市面上界面设计已经足够的类型化和模式化,我们日常可以从大量的案例库做设计抉择。对于业务非常垂直,目前界面生成的AI也缺乏领域知识,不过相信只是时间问题,将来规则的成熟也将更大概率的来补充、或替代部分界面设计的工作。因为界面设计在各行业、各企业中始终在朝着规则化、结构化、系统化的方向发展,未来将企业各自定义的设计系统喂给AI,基于偏好的生成结果,已经有团队在研究和试验了,如果可以成熟推向市面,对于界面设计来说还是非常值得期待的。

4、市面上设计厂商如何与AI产生关系

其实目前设计团队或设计行业与AI的关系,可以归纳为3种形态:用已有ai,辅助设计研发ai,赋能业务设计型SaaS,做ai功能赋能行业这里不涉及设计作为UI、UX设计师接相关AI业务需求的场景,目前主要的关系是用AI工具辅助设计,设计驱动研发AI赋能业务在部分大厂有,非常稀缺,设计SaaS赋能行业总体来讲玩家数量有限。

小结

AI热潮已经来临,尤其是在智能应用层面爆发式增长,对于内容生产的设计师,虽离替代还有距离,但AIGC提升商业性内容生产的效率和质量,已经在发生,且在将来一定会更深度的改变商业内容生产的发展。目前的AI产品在创意设计、文本类场景可以找到比较成熟的落地可行性,设计能有效的结合到内容生产过程中去。具象表达的图形,可通过生成较好完成产出;艺术性强、复用性比较弱的场景、素材;文本型的AI可以帮助设计师在总结、查询、梳理等场景;界面类生成AI工具,能为初次设计提供一些方案可能性,目前生成效果、可控性远达不到“可用”状态,未来可期。

趋势已来,设计师该如何看待和应对?

从今年三四月份开始,全行业AI替代的声音让设计师的焦虑也前所未有,AI时代我们需要怎么看、怎么入局?作为设计师,我觉得可以从设计服务、历史发展的角度来理解和顺应这一轮技术的变革,更清晰的了解发展趋势、危与机。

1、从设计服务的角度,看这一轮技术变革

远观历史,科技与社会进步,持续带来的新机会

从历史角度来看,设计是服务于科技和社会进步的,每一次技术的发展社会的变革,势必带来设计形态的改变,从两次工业革命到信息化、智能化时代,每个周期内都会衍生出新的危和机。AI时代,生成内容让创意有了更多可能性,在设计领域将可能在21世纪造就下一个“包豪斯”。包豪斯让工业现代化的技术与艺术融合,创造了把艺术和商业相结合的新模式,如今AI作为新技术为创业产业带来的创意生产力也将是前所未有的。

近观信息网络的发展,设计师一直在面对新命题

从信息交互的发展看,设计作为一种岗位,服务于商业在科技发展的不同时期,以平面设计为例,对设计师有着不同的要求:在印刷时代对手头版式功夫有较高的要求;在图形交互软件时代,对图形的抽象与软件基础表达有新的技能诉求。在上世纪90年代,在硅谷如果有人熟练Photoshop,都可以直接创业或成为非常稀缺的人才;在互联网兴起,门户、信息爆炸时代,对信息的传播、呈现有新的要求,在技法的表现格外注重;对移动、产业互联网,对设计对用户、端、商业、技术理解又有新的要求;在人工智能时代,部分重复性、初级的设计需求将被替代,设计师乃至互联网职场人的能力维度将随之会有所改变,善用AI的综合能力素养变为刚需,在能力维度上接近于“雪花型”。因此,设计师别慌,从设计变革和信息技术的发展来看,设计一直在面临变化,只有顺应变化给我们新的要求,我们才能转危为机。

2、如何应对

不是所有设计师所在公司都会有AI相关研发,对于设计岗位来讲,利用AI去生产内容成本极低的一件事,所以小编认为做好两点:一是用好工具;二是转变思维,重新布局个人能力。

用好它,就现在

如前文Gartner预测,AI目前已经进入预期的顶峰,在接下来一段时间可能会趋于冷静,但不是停滞,是更深度与现实结合的窗口期,不会同当年的“元宇宙”那样,都在喊没人行动的局面,因此我们需要:用好它,就现在!不是说人人都成为Prompt设计师 or工程师,其实也不能这么叫,未来AI产品趋于稳定成熟的情况下,它是一项基础技能,如同设计师掌握PS使用技能一样,没人会叫自己是PS设计师,PS工程师。本质上AI产品只是一个拿到结果的工具,关键不在于Prompt(虽然目前非常重要),而在于工具使用前的想象力和洞察力,以及之后对结果的判断、审美和应用落地能力。虽然目前的AI能力不完美,技术调优、应用场景还有很多提升空间,但对于设计师积极拥抱它是必然趋势。目前群核设计团队在创意表达场景上试点应用,梳理教程总结方法,找到契合的业务需求或设计过程,让AI局部参与,并梳理几个关键产品使用方法,后续还会在更多的场景中应用与探索。

布局个人能力,让AI成为个人能力的超级后备军

利用专业审美和技能,开发风格模型、大模型是设计应该关注的,就如同组件一样,一套组件可用于多个场景。大模型亦是如此,做出属于自己团队适合的风格,训练出足够优秀的大模型来复用至以后的场景。利用AI的长处,丰富自己的能力,披上外挂让自己内容产出质量、效率加倍。以上是本文的所有内容,针对AIGC对设计行业影响及启发,从宏观视角进行阐述,AI时代设计师将面对危机共存的情况,如何看清事物发展的方向与规律,顺应趋势,趁早入局,成为时代需要的人,从而成为趋势与变革的受益者

⭕️⭕️如何领取本期读者资源?先将“UXD笔记”公众号设为⭐️星标,然后在后台回复以下关键词,即可实现无套路领取。

【1】回复“金山”——金山云King Designs设计系统源文件组件库(Sketch+Axure)+B端后台设计模板+移动端组件库+金山云UX度量工具模板。

【2】如何加入大厂内推群和设计交流群?不定期分享求职面试相关资料,以及最新的内推信息。扫描下方二维码加小编,进大厂内推群备注“内推”,进设计交流群备注“交流”。

83473位读者一起成长

?来自 UXD笔记 的温馨提示:因公众号消息推送机制改版,如果你没有给我们加⭐️星标,将有可能无法收到 UXD笔记 的大封面推送,导致在信息流里错过精彩内容。

为防止走失,我们邀请你做一个小小的动作,给 UXD笔记 微信公众号加个⭐️星标,方便你及时获取大厂UX知识推送。

aigc%E6%8E%A2%E7%B4%A2_%E5%8E%8B%E7%BC%A920k.png

AI时代,掌握AI大模型第一手资讯!AI时代不落人后!

免费ChatGPT问答,办公、写作、生活好得力助手!

扫码右边公众号,驾驭AI生产力!

Leave a Reply

Your email address will not be published. Required fields are marked *